Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647869

RESUMO

Global food production faces challenges concerning access to nutritious and sustainably produced food. Pleurotus djamor, however, is an edible mushroom that can be cultivated on agricultural waste. Considering that nutritional and functional potential of mushrooms can change based on cultivation conditions, we examined the influence of substrates with different compositions of banana leaf and sugarcane bagasse on the nutritional, mycochemical, and antioxidant properties of P. djamor. The mushrooms were grown for 120 days and dried in a circulating air oven at 45 °C for three days. We conducted bromatological analyses and mycochemical characterization (1H-NMR, total phenolics, and flavonoids) of the mushrooms and assayed the antioxidant activity of extracts from the dried mushrooms using an ethanol/water solution (70:30 v/v). In general, the substrates produced mushrooms with high protein (18.77 ± 0.24% to 17.80 ± 0.34%) and dietary fiber content (18.02 ± 0.05% to 19.32 ± 0.39%), and with low lipid (0.28 + 0.08% to 0.4 + 0.6%), and caloric content (maximum value: 258.42 + 8.49), with no significant differences between the groups (p ≥ 0.05). The mushrooms also exhibited high levels of total phenolics and flavonoids. The mushrooms cultivated on sugarcane bagasse substrates presented the highest values (p < 0.05). Analysis of the 1H-NMR spectra indicates an abundant presence of heteropolysaccharides, ß-glucans, α-glucans, and oligosaccharides, and all the mushroom extracts exhibited high antioxidant activity. In conclusion, our study demonstrates that agricultural residues permit sustainable production of edible mushrooms while maintaining nutritional and functional properties.

2.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298890

RESUMO

Worldwide, the fungus known as huitlacoche (Ustilago maydis (DC.) Corda) is a phytopathogen of maize plants that causes important economic losses in different countries. Conversely, it is an iconic edible fungus of Mexican culture and cuisine, and it has high commercial value in the domestic market, though recently there has been a growing interest in the international market. Huitlacoche is an excellent source of nutritional compounds such as protein, dietary fiber, fatty acids, minerals, and vitamins. It is also an important source of bioactive compounds with health-enhancing properties. Furthermore, scientific evidence shows that extracts or compounds isolated from huitlacoche have antioxidant, antimicrobial, anti-inflammatory, antimutagenic, antiplatelet, and dopaminergic properties. Additionally, the technological uses of huitlacoche include stabilizing and capping agents for inorganic nanoparticle synthesis, removing heavy metals from aqueous media, having biocontrol properties for wine production, and containing biosurfactant compounds and enzymes with potential industrial applications. Furthermore, huitlacoche has been used as a functional ingredient to develop foods with potential health-promoting benefits. The present review focuses on the biocultural importance, nutritional content, and phytochemical profile of huitlacoche and its related biological properties as a strategy to contribute to global food security through food diversification; moreover, the biotechnological uses of huitlacoche are also discussed with the aim of contributing to the use, propagation, and conservation of this valuable but overlooked fungal resource.


Assuntos
Basidiomycota , Ustilago , México , Fibras na Dieta
3.
Braz. J. Pharm. Sci. (Online) ; 58: e19173, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374552

RESUMO

Abstract Nanotechnology has been used in the field of medicine and pharmacology for its greater efficacy of drug delivery than crude molecules of drugs. In the present study medicinal mushroom Ganoderma applanatum extract mediated silver nanoparticles (AgNPs) were synthesized, characterized by Ultraviolet-visible (UV-Vis.) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, Dynamic light scattering (DLS) and Furior transform-infrared (FTIR) spectroscopy. Maximum absorbance was recorded at 435nm by UV-Vis. The synthesized nanoparticles of 13.54nm-255nm in size with an average particle size of 58.77nm were analyzed by DLS. FTIR-Spectroscopy provided high transmission at 3606cm-1 corresponds for phenolic capping biochemical. Thus G. applanatum extract can be used for synthesis of silver nanoparticles and the synthesized nanoparticles may be used for development of future therapeutic agent for treatment of diseases.


Assuntos
Prata , Nanopartículas , Difração de Raios X/métodos , Microscopia Eletrônica de Varredura/métodos , Ganoderma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...